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Dynamics of Ebola Virus 
Udeze, Chigozie. J., Erumaka, E.N, Umana R.A, Nse, C. A., Njoku, Kevin N. C 

Abstract: In this work a deterministic and stochastic model is developed to investigate the dynamics of Ebola epidemic. The 
model includes susceptible, exposed, infected, quarantined and removed or recovered individuals. The model used in this work 
is based on a deterministic model. The Chowel et. al (2015) work on early detection of Ebola is modified by introducing an 
assumption that the quarantined class is totally successful and cannot infect the susceptible class. The resulting model is 
transformed into a stochastic model and solved using the Euler Maruyama method. Data generated with the values assigned to 
the parameters are used for the simulation. We have been able to develop and analyse a model with an effective isolation of 
infected individuals and its effect to the basic reproductive number is analysed. In our simulation, the population of infectious 
individuals is shown over a period of time. It is seen that the disease will produce an epidemic and after some time, the infected 
class maintain a uniform increment. 

INDEX TERMS: Jacobian, Steady State, Reproductive Number, Stochastic, Deterministic 

 

——————————      —————————— 
 

1. Introduction/Model Formulation: 

The total population at time t , denoted by ( )N t , is divided into the mutually exclusive compartments of susceptible 

individuals ( )S t , exposed individuals ( )E t , infectious individuals ( )I t , quarantined or isolated individuals ( )Q t and 

recovered individuals ( )R t , so that  

( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t Q t R t= + + + +  

We formulate our model with the following assumptions: 

i. The isolation is completely effective such that a successful contact with susceptible individuals is impossible. 

ii. There can be a recovery for both infectious and quarantined class. 

iii. It is assumed that individuals are recruited either by birth or by migration into the susceptible class at rate Λ. 

iv. Susceptible individuals acquire Ebola virus as a result of interaction with only infectious individuals at a rate λ , where 

Iλ β=  
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Figure 1: Schematic representation of the model 

 

 

 

 

 

Table 1: Description of model variables 

Variable  Description 
( )S t  Susceptible individuals 

( )E t  Exposed individuals 

( )I t  Infectious individuals 

( )Q t  Quarantined or isolated individuals 

( )R t  Recovered individuals 

 

 Table 2: Description of model parameters 

Parameter Description 
Λ  Recruitment rate 
β  Effective contact rate 

k  Transmission rate for exposed individuals 

1γ  Removal rate for infectious individuals either by recovery or Ebola induced death 

2γ  Removal rate for isolated individuals either by recovery or Ebola induced death 

α  Rate at which an infectious individual gets isolated  
δ  Fraction of latent detectable individuals who are diagnosed and get isolated 

   𝜇𝜇 + 𝑞𝑞1𝛾𝛾1  𝐼𝐼 
Λ    (1 − 𝑞𝑞1)𝛾𝛾1  (1 − 𝛿𝛿)𝑘𝑘 

α 
 𝜇𝜇     𝜆𝜆𝜆𝜆 

𝑅𝑅 𝐸𝐸 𝜆𝜆 

    (1 − 𝑞𝑞2)𝛾𝛾2  𝛿𝛿𝑘𝑘 

𝜇𝜇 𝜇𝜇 
𝑄𝑄 
𝜆𝜆  

 

 

 

 

 

   𝜇𝜇 + 𝑞𝑞2𝛾𝛾2  
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1q  Probability that an infectious individual dies due to Ebola 

2q  Probability that an isolated individual dies due to Ebola 

 
The model equations are therefore given by  

1

2

1 1 2 2

( )

(1 ) ( )

( )

(1 ) (1 )

dS S S
dt
dE S k E
dt
dI kE I
dt
dQ kE I Q
dt
dR q I q Q R
dt

λ µ

λ µ

δ α γ µ

δ α γ µ

γ γ µ

= Λ − − 

= − + 
= − − + + 

= + − + 

= − + − − 

       (1.1) 

 
1.1 Basic Properties of the model 

Theorem 1 

Let the initial data for the model (1.1) be (0) 0, (0) 0, (0) 0, (0) 0, (0) 0S E I Q R> > > > > . Then, the solutions 

( )( ), ( ), ( ), ( ), ( )S t E t I t Q t R t of the model (1.1) with positive initial data, will remain positive for all time 0.t >  

Proof 

Let  

{ }1 sup 0 : ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0 0t t S t E t I t Q t R t= > > > > > > >  

It follows from the first equation of the model (3.6) that 

dS S S
dt

λ µ= Λ − −  

which can be re-written as 

0 0

( ) exp[ ( ) ] exp[ ( ) ]
t td S t t d t d

dt
µ λ τ τ µ λ τ τ

      + = Λ +   
      

∫ ∫  

Thus, 

1 1

1 1
0 0 0

( ) exp[ ( ) ] (0) exp[ ( ) ]
t t y

S t t d S y d dyµ λ τ τ µ λ τ τ
      + − = Λ +   

     
∫ ∫ ∫  

This implies 
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1

1

1

1
0

1
0

0 0

( ) (0)exp[ ( ) ]

exp[ ( ) ]

exp ( ) 0

t

t

t y

S t S t d

t d

y d dy

µ λ τ τ

µ λ τ τ

µ λ τ τ

= − −

  + − − 
  

  × Λ − − > 
  

∫

∫

∫ ∫

 

Similarly, it can be shown that 0, 0, 0, 0E I Q R> > > > for all time 0t >  

 
Theorem 2 

The closed set ( ) 5, , , , :S E I Q R R N
µ+

 Λ
Ω = ∈ ≤ 

 
 is positively invariant 

Proof 

Adding all the equations of the model gives 

dN dS dE dI dQ dR
dt dt dt dt dt dt

= + + + +  

1 1 2 2N q I q Qµ γ γ= Λ − − −  

In the absence of infection 

0I Q= = , so that 

dN N
dt

µ≤ Λ −  

We now apply Birkhoff and Rota’s Theorem on differential inequality. 

By separation of variables of differential inequality, we obtain 

dN dt
Nµ
≤

Λ −
 

Integrating both sides gives 

1 ln( )

ln( ) ( )

dN dt
N

N t c

N t c

µ

µ
µ

µ µ

≤
Λ −

⇒ − Λ − ≤ +

⇒ Λ− ≥ − +

∫ ∫

 

Therefore, 

,tN Be µµ −Λ − ≥ where B  is a constant. 

Now applying 0(0)N N=  we have 

0A Nµ= Λ −  

Substituting gives 
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0( ) tN N e µµ µ −Λ − ≥ Λ −  

Making µ  the subject of the formula we have 

0 tNN e µµ
µ µ

−Λ − Λ
≤ −  

 
 

As t →∞ in  the population size, N  approaches 

0 N N
µ µ
Λ Λ

≤ ≤ ⇒ →  

Therefore, the feasibility solution set of the system of equations enters the region 

5( , , , , ) :S E I Q R R N
µ+

 Λ
Ω = ∈ ≤ 

 
 

In this case, whenever ,N
µ
Λ

>  then 0dN
dt

<  which means that the population reduces asymptotically to the carrying 

capacity. On the other hand, whenever ,N
µ
Λ

≤  every solution with initial condition in 5R+  remains in that region for 0.t >  

Thus, the region Ω  is positively-invariant and the model is well posed and biologically meaningful. 

 
1.2 STOCHASTIC MODEL EQUATIONS  
 
Applying the method developed by Allen et al. (2008), we can get the stochastic model for the deterministic model above. 

The drift vector is defined as 

14

1
ii

i
f p λ

=

=∑
 

, where ip  and iλ


are the random changes and transition probabilities respectively, defined in Table 3 below. 

Table 3 

Change Probability Event 

[1 0 0 0 0]T  1p t= Λ∆  Birth of a susceptible  

[ 1 0 0 0 0]T−  2p S tµ= ∆  Susceptible dies natural death  

[ 11 0 0 0]T−  3p SI tβ= ∆  Susceptible becomes exposed 

[0 1 0 0 0]T−  4p E tµ= ∆  Exposed individual dies natural death 

[0 11 0 0]T−  5 (1 )p k tδ= − ∆  Exposed individual becomes infectious 

[0 1 0 1 0]T−  6p k tδ= ∆  Exposed individual is quarantined 

[0 0 1 0 0]T−  7p I tµ= ∆  Infectious individual dies natural death 

[0 0 11 0]T−  8p I tα= ∆  Infectious individual is quarantined 

[0 0 1 0 1]T−  9 1 1(1 )p q tγ= − ∆  Infectious individual recovers 

[0 0 1 0 0]T−  10 1 1p q tγ= ∆  Infectious individual dies due to Ebola 

[0 0 0 1 0]T−  11p Q tµ= ∆  Quarantined dies natural death 

[0 0 0 1 0]T−  12 2 2(1 )p q tγ= − ∆  Quarantined individual recovers  

[0 0 0 11]T−  13 2 2p q tγ= ∆  Quarantined individual dies due to Ebola 
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[0 0 0 0 1]T−  14p R tµ= ∆  Recovered individual dies natural death 

 
 
 
 
 

14

1
ii

i
f p λ

=

=∑
 

 

1 2 3 4 5 6 7

8

1 1 1 0 0 0 0
0 0 1 1 1 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0

0
0
1

1
0

f p p p p p p p

p

− −             
             − − −             
             = + + + + + + −
             
             
             
             

 
 
 
 + −
 


 



9 10 11 12 13 14

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1

p p p p p p

           
           
           
           + + + + + +−
           

− − −            
            −           

 

0 0 0 0
0 0 (1 ) 0
0 0 0 0 ( 1) 0
0 0 0 0 0 0
0 0 0 0 0 0 0

0
0

0

S SI
SI E k k

f k I
k

I
I

µ β
β µ δ δ

δ µ
δ

α
α

∆ − −             
             − − − −             
             = + + + + + +− −
             
             
             
             

 


+ −







1 1 1 1

2 22 2

1 1 2 2

00 00 0 0
00 00 0 0
0( 1) 00 0

0 ( 1)0 0
(1 ) 0 0 0

q q
qqQ

q q R

γ γ
γγµ

γ γ µ

         
          
          
          + + + + + +− −
          −−−           

           − −           

 

Hence, the drift vector 𝑓𝑓 of order 5 × 1, is given by 
 

1

2

1 1 2 2

( )
(1 ) ( )

( )
(1 ) (1 )

S S
S k E

f kE I
kE I Q

q I q Q R

λ µ
λ µ

δ α γ µ
δ α γ µ

γ γ µ

Λ − − 
 − + 
 = − − + +
 

+ − + 
 − + − − 


 

 
whereV  is the covariance matrix, given as: 

14

1

T

i
i

V p λλ
=

=∑
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1 2 3

4 5 6

7

1 1 1
0 0 1

(1 0 0 0 0) ( 1 0 0 0 0) ( 1 1 0 0 0)0 0 0
0 0 0
0 0 0

0 0 0
1 1 1

(0 1 0 0 0) (0 1 1 0 0) (0 1 0 1 0)0 1 0
0 0 1
0 0 0

V p p p

p p p

p

− −     
     
     
     = + − + −
     
     
     
     

     
     − − −     
     + − + − + −
     
     
     
     

+ 8 9

10 11 12

0 0 0
0 0 0

(0 0 1 0 0) (0 0 1 1 0) (0 0 1 0 1)1 1 1
0 1 0
0 0 1

0 0 0
0 0 0

(0 0 1 0 0) (0 0 0 1 0) (0 0 0 1 0)1 0 0
0 1 1
0 0 0

p p

p p p

p

     
     
     
     − + − + −− − −
     
     
     
     
     
     
     
     + − + − + −−
     

− −     
     
     

+ 13 14

0 0
0 0

(0 0 0 1 1) (0 0 0 0 1)0 0
1 0

1 1

p

   
   
   
   − + −
   
−   
   −   
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
0 (1 ) (

S SI SI
SI SI E

V

SI SI

k

µ β β
β β µ

β β

δ

Λ −       
       −       
       = + + +
       
       
       −       

−
+

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ( 1) (1 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0

k k k
k k I I I

k k I I

δ δ δ
δ δ µ α α

δ δ α α

       
       − −       
       + + +− − −
       

− −       
       
       

+ 1 1 1 1 1 1

1 1 1 1

2 2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(1 ) 0 ( 1) 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ( 1) 0 (1 ) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 (1 ) 0
0 0 0 0 0

q q q
Q

q q

q

γ γ γ
µ

γ γ

γ

     
     
     
     + +− −
     
     

    − −     
 
 
 
 + +
 

− 
 
 

2 2 2 2

2 2 2 2

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

q q
q q R
γ γ
γ γ µ

   
   
   
   +
   

−   
  − −  

 

Hence, the covariance matrix 𝑉𝑉 of order 5 × 5 is given by 
 

1 1)

0 0
(1 ) ( 1) 0

0 ( 1) ( 1) ( 1) 2(1 ) ( 1)1 1 1 1 1 1 1 1 2 2 1 1
0 02 2
0 0 ( 1) (11 1 2 2 2 2

0S SI SI
SI SI E k k k k

k q k q k I q q q q
k I k I Q q

q q q q Rγ

µ β β
β β µ δ δ δ δ

δ γ δ γ δ µ γ γ γ γ
δ α δ α µ γ

γ γ γ µ+

Λ + + −
− + + − + − −

− + − − + − + + − + + − −

− − + + +

− − − +

 
 
 
 
 
 

 

 
The stochastic model is therefore given by 
 

1
2( ( )) ( ( )) ( , ( )) ( )d X t f X t dt V t X t dW t= +

 
 

 
We have already seen the transition probabilities as shown above. 
 
where the drift vector 𝑓𝑓 of order 5 × 1,  
 

ip and iλ


 (𝑖𝑖 = 1, … ,14) are random changes and transition probabilities represented in the above table. 
 

The diffusion matrix is obtained from the entries iip λ


.  It is given by  
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( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ( ) ( 1) 0 0 0 0 0 0 0
0 0 0 0 (1 ) 0 ( ) ( ) [(1 ) ] ( ) 0 0 0 01 1 1 1
0 0 0 0 0 0 0 0 ( ) [(1 ) ] ( ) 02 2 2 2
0 0 0 0 0 0 0 0 [(1 ) ] 0 0 0 ( ) ( )1 1 2 2

S SI
SI k k

k I I q q
k Q q q

q q R

E

I

µ β
β δ δ

δ µ α γ γ
δ µ λ γ

γ γ µ

µ

α

−

−

∆ − −
− − −

− − − − − −
− − −

− −

 
 
 
  
 

 

 

where 1 2 3 4 5 6 7 8 9 10 11 12 13 14[ , , , , , , , , , , , , , ]TW W W W W W W W W W W W W W W=


 is a vector of fourteen   

independent Wiener processes. In addition, 𝑑𝑑𝑊𝑊���⃗ (𝑡𝑡) has order  
 
14 1× while 𝑑𝑑𝑋𝑋 ���⃗ is a 5 1× dimensional vector.  
 

if are given below: 
 

1

2

3 1

4 2

5 1 1 2 2

( )
(1 ) ( )

( )
(1 ) (1 )

f S S
f S k E
f kE I
f kE I Q
f q I q Q R

λ µ
λ µ

δ α γ µ
δ α γ µ

γ γ µ

= Λ − −
= − +
= − − + +
= + − +
= − + − −

 

 
The elements of the diffusion matrix 
 

g1,1 = √Λ, g1,2 = −�μS, g1,3 = −g2,3 = �βSI, g3,5 = −g2,5 = �(1 − δ) 
g2,4 = −�μE, g4,6 = −g2,6 = √δk, g4,8 = −g3,8 = �[αI 

g3,7 = −�μI, g4,8 = −g3,8 = √αI, g5,9 = −g3,9 = (1 − q1)γ1 
g4,11 = −�μQ, g4,12 = �(q2 − 1)γ2 , g5,13 = −g4,13 = �q2γ2 

g5,14 = −�μR 
g1,4 = g1,5 = g1,6 = g1,7 = g1,8 = g1,9 = g1,10 = g1,11 = g1,12 = g1,13 = g1,14 = 0 

g2,1 = g2,2 = g2,7 = g2,8 = g2,9 = g2,10 = g2,11 = g2,12 = g2,13 = g2,14 = 0 
g3,1 = g3,2 = g3,3 = g3,4 = g3,6 = g3,11 = g3,12 = g3,13 = g3,14 = 0 
g4,1 = g4,2 = g4,3 = g4,4 = g4,5 = g4,7 = g4,9 = g4,10 = g4,14 = 0 

g5,1 = g5,2 = g5,3 = g5,4 = g5,5 = g5,6 = g5,7 = g5,8 = g5,10 = g5,11 = 0 
 
 

5
2

1
( )i

i
f f x

=

= ∑ and  ,
4 9

2

1 1
( )ij

i j
G g x

= =

= ∑∑  

 
 
where 
 

2 2 2 2 2 2
1 2 3 3 4 5[ ] [ ] [ ] [ ] [ ] [ ]f f f f f f f= + + + + +  

 

1 1 1 2) 22 3(1 ) (1 ) 2(1 )G S SI k q q q Rµ β δ δ γ γ µ= Λ + + + − + + − + + − +  

 
Both if  and ijg  are continuously differentiable at 𝜆𝜆,𝐸𝐸, 𝐼𝐼,𝑄𝑄 𝑎𝑎𝑎𝑎𝑑𝑑 𝑅𝑅 and hence satisfy the  

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017                                                                                           10 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

Lipschitz condition (by the Mean value theorem for calculus). Since the norms exist, they are bounded. The drift and the 
diffusion matrices are therefore bounded. Hence, they satisfy the conditions for existence and uniqueness of solution.  
 
1.3 Basic reproduction number (𝑹𝑹𝟎𝟎) 

The basic reproductionnumber (𝑅𝑅0) is calculated from the disease compartments i.e  

those classes that have the disease (𝐸𝐸, 𝐼𝐼,𝑄𝑄). 

The basic reproductionnumber (𝑅𝑅0) is calculated as follows: 

ℱ: Rate of appearance of new infection = �
𝛽𝛽𝜆𝜆𝐼𝐼

0
0
� 

𝒱𝒱𝑖𝑖− : Rate of transfer of disease out of the disease compartment                = �
𝜇𝜇𝐸𝐸 + (1 − 𝛿𝛿)𝑘𝑘𝐸𝐸 + 𝛿𝛿𝑘𝑘𝐸𝐸

𝛼𝛼𝐼𝐼 + (𝜇𝜇 + 𝑞𝑞1𝛾𝛾1)𝐼𝐼 + (1 − 𝑞𝑞1)𝛾𝛾1𝐼𝐼
(𝜇𝜇 + 𝑞𝑞2𝛾𝛾2)𝑄𝑄 + (1 − 𝑞𝑞2)𝛾𝛾2𝑄𝑄

� = �
(𝜇𝜇 + 𝑘𝑘)𝐸𝐸

(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)𝐼𝐼
(𝜇𝜇 + 𝛾𝛾2)𝑄𝑄

� 

𝒱𝒱𝑖𝑖+: Rate of transfer of infection into the disease compartment by other means  

𝒱𝒱𝑖𝑖+ = �
0

(1 − 𝛿𝛿)𝑘𝑘𝐸𝐸
𝛼𝛼𝐼𝐼 + 𝛿𝛿𝑘𝑘𝐸𝐸

� 

𝒱𝒱𝑖𝑖 = 𝒱𝒱𝑖𝑖− − 𝒱𝒱𝑖𝑖+ = �
(𝜇𝜇 + 𝑘𝑘)𝐸𝐸

(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)𝐼𝐼 − (1 − 𝛿𝛿)𝑘𝑘𝐸𝐸
(𝜇𝜇 + 𝛾𝛾2)𝑄𝑄 − 𝛼𝛼𝐼𝐼 − 𝛿𝛿𝑘𝑘𝐸𝐸

� 

𝐹𝐹 = 𝜕𝜕ℱ(𝐸𝐸0)
𝜕𝜕𝑥𝑥𝑗𝑗

 : The Jacobian of ℱwith respect to disease compartments(𝑥𝑥𝑗𝑗 )evaluated at D.F.E i.e 𝐸𝐸0 = (𝜆𝜆0 ,𝐸𝐸0, 𝐼𝐼0,𝑄𝑄0, 

 

𝑉𝑉 = �−
(𝜇𝜇 + 𝑘𝑘) 0 0

(1 − 𝛿𝛿)𝑘𝑘 (𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1) 0
−𝛿𝛿𝑘𝑘 −𝛼𝛼 (𝜇𝜇 + 𝛾𝛾2)

� 

 

𝑉𝑉−1 =
1

𝐷𝐷𝐷𝐷𝑡𝑡(𝑣𝑣)
(𝐴𝐴𝑑𝑑𝑗𝑗𝐴𝐴𝑖𝑖𝑎𝑎𝑡𝑡 𝐴𝐴𝑓𝑓 𝑉𝑉) 

=
1

(𝜇𝜇 + 𝑘𝑘)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)(𝜇𝜇 + 𝛾𝛾2)�
(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)(𝜇𝜇 + 𝛾𝛾2) 0 0

(𝜇𝜇 + 𝛾𝛾2)(1 − 𝛿𝛿)𝑘𝑘 (𝜇𝜇 + 𝛾𝛾2)(𝜇𝜇 + 𝑘𝑘) 0
𝛼𝛼(1 − 𝛿𝛿)𝑘𝑘 + 𝛿𝛿𝑘𝑘(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1) 𝛼𝛼(𝜇𝜇 + 𝑘𝑘) (𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)(𝜇𝜇 + 𝑘𝑘)

� 

=

⎝

⎜
⎜
⎜
⎛

1
(𝜇𝜇 + 𝑘𝑘)

0 0

(1 − 𝛿𝛿)𝑘𝑘
(𝜇𝜇 + 𝑘𝑘)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)

1
(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1) 0

𝛼𝛼(1 − 𝛿𝛿) + 𝛿𝛿𝑘𝑘(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)
(𝜇𝜇 + 𝑘𝑘)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)(𝜇𝜇 + 𝛾𝛾2)

𝛼𝛼
(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1)(𝜇𝜇 + 𝛾𝛾2)

1
(𝜇𝜇 + 𝛾𝛾2)⎠

⎟
⎟
⎟
⎞
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The basic reproductive number 

𝑅𝑅0 = 𝐹𝐹𝑉𝑉−1 = �
0 𝛽𝛽 Λ

𝜇𝜇
0

0 0 0
0 0 0

�

⎝

⎜
⎛

1
(𝜇𝜇+𝑘𝑘)

0 0
(1−𝛿𝛿)𝑘𝑘

(𝜇𝜇+𝑘𝑘)(𝜇𝜇+𝛼𝛼+𝛾𝛾1)
1

(𝜇𝜇+𝛼𝛼+𝛾𝛾1)
0

𝛼𝛼(1−𝛿𝛿)𝑘𝑘+𝛿𝛿𝑘𝑘 (𝜇𝜇+𝛼𝛼+𝛾𝛾1)
(𝜇𝜇+𝑘𝑘)(𝜇𝜇+𝛼𝛼+𝛾𝛾1)(𝜇𝜇+𝛾𝛾2)

𝛼𝛼
(𝜇𝜇+𝛼𝛼+𝛾𝛾1)(𝜇𝜇+𝛾𝛾2)

1
(𝜇𝜇+𝛾𝛾2)⎠

⎟
⎞ 

=
𝛽𝛽Λ(1 − 𝛿𝛿)𝑘𝑘

𝜇𝜇(𝜇𝜇 + 𝑘𝑘)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾1) 

 

1.4 ENDEMIC STEADY STATE 

Endemic state equilibrium at this state the differential equations of the model is set to zero but 𝐼𝐼 ≠0,𝑄𝑄 ≠0  

𝑑𝑑𝜆𝜆
𝑑𝑑𝑡𝑡

= Λ − 𝛽𝛽𝜆𝜆𝐼𝐼 − 𝜇𝜇𝜆𝜆 = 0                                                                         1.2 

𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝜆𝜆𝐼𝐼 − (𝑘𝑘 + 𝜇𝜇)𝐸𝐸 = 0                                                                       1.3 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

= (1 − 𝛿𝛿)𝑘𝑘𝐸𝐸 − (𝛼𝛼 + 𝛾𝛾1 + 𝜇𝜇)𝐼𝐼 = 0                                                        1.4 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛿𝛿𝑘𝑘𝐸𝐸 + 𝛼𝛼𝐼𝐼 − (𝛾𝛾2 + 𝜇𝜇)𝑄𝑄 = 0                                                            1.5 

𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

= (1 − 𝑞𝑞1)𝛾𝛾1𝐼𝐼 + (1 − 𝑞𝑞2)𝛾𝛾2𝑄𝑄 − 𝜇𝜇𝑅𝑅 = 0                                            1.6 

On putting the derivatives in the left hand side and equating it to zero and solving the resulting differential equation with 

respect to the variables , , ,S E I Q  and R , we obtain 

Λ − 𝛽𝛽𝜆𝜆𝐼𝐼 − 𝜇𝜇𝜆𝜆 = 0 ⇒ 𝜆𝜆 =
Λ

𝜇𝜇 + 𝛽𝛽𝐼𝐼
 

E =

Λ
𝜇𝜇+𝛽𝛽𝐼𝐼  

 𝛽𝛽𝐼𝐼

𝑘𝑘 + 𝜇𝜇
=

Λ
𝜇𝜇 + 𝛽𝛽𝐼𝐼

.
βI

𝑘𝑘 + 𝜇𝜇
 

𝐼𝐼 = (1−δ)k
𝛼𝛼+𝛾𝛾1+𝜇𝜇

. Λ
𝜇𝜇+𝛽𝛽𝐼𝐼

. βI
𝑘𝑘+𝜇𝜇

                                                                                                    1.7 

𝑄𝑄= 𝛿𝛿𝑘𝑘Λ
𝜇𝜇+𝛽𝛽𝐼𝐼

. βI
𝑘𝑘+𝜇𝜇

. (1−δ)αk
𝛼𝛼+𝛾𝛾1+𝜇𝜇

. Λ
𝜇𝜇+𝛽𝛽𝐼𝐼

. βI
𝑘𝑘+𝜇𝜇

 

𝑅𝑅 =
1
𝜇𝜇

[(1 − 𝑞𝑞1)𝛾𝛾1𝐼𝐼 + (1 − 𝑞𝑞2)𝛾𝛾2𝑄𝑄] 

We obtain the endemic steady state at  𝑈𝑈1 = (𝜆𝜆1,𝐸𝐸1, 𝐼𝐼1,𝑄𝑄1,𝑅𝑅1) 
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Evaluating J at 𝑈𝑈1 

𝑑𝑑1=

⎝

⎜
⎛

−(βI + μ) 0                        − βS 0               0
βI −(k + μ)                       βS 0               0
0
0
0

(1 − δ)k         −(α + 𝛾𝛾1 + μ)
δk                         α

                    0      (1 − q1)γ1

            0
     −(γ2 + μ)
   (1 − q2)γ2

          0               
          0              

     −μ          ⎠

⎟
⎞

 

Compute the eigenvalues, we solve 

 |𝑐𝑐𝐼𝐼 − 𝑑𝑑1|    =0  

⇒

⎝

⎜
⎛

c + (βI + μ) 0                         βS 0               0
−βI c + (k + μ)                    −βS 0               0

0
0
0

             − (1 − δ)k         c + (α + 𝛾𝛾1 + μ)
         −δk                       − α

                    0                 −(1 − q1)γ1

            0
     c + (γ2 + μ)
 − (1 − q2)γ2

          0               
          0              
     c + μ          ⎠

⎟
⎞

= 0 

 

⇒ 𝑐𝑐 =  −(μ − βI),−(k + μ),−(α + 𝛾𝛾1 + μ),−(γ2 + μ),−𝜇𝜇 

 The endemic state is locally asymptotically stable μ > 𝛽𝛽𝐼𝐼 

 
 
 
 
Numerical Simulation 
 
Parameter values unit Reference 
Λ  70  1day−  Chowel, et al.(2015) 

β  0.91  1day−  Ebenezer, et al.(2016) 

k  0.2  1day−  Chowel, et al.(2015) 

1γ  0.17  1day−  Ebenezer, et al.(2016) 

2γ  0.2  1day−  Chowel, et al.(2015) 

α  0.08  1day−  Ebenezer, et al.(2016) 

δ  0.6  1day−  Chowel, et al.(2015) 

1q  0.7  1day−  Chowel, et al.(2015) 

2q  0.63  1day−  Chowel, et al.(2015) 

µ  0.000498  1day−  Ebenezer, et al.(2016) 

 The initial populations were assumed to be ( ( ), ( ), ( ), ( ), ( )) (20,25,15,25,15)S t E t I t Q t R t =  
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Deterministic model analysis 
 

 
Fig. 2: Graph of Infected against time 
 
 

 
Fig. 3: Graph of Quarantined against time 
 
 
From Fig. 2, the population of infectious individuals is shown over a period of time. It is seen that the disease will produce an 
epidemic and after some time, the infected class maintains a uniform increment. The quarantined population is also shown to 
behave in a similar manner over a period of time.   
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Stochastic model Analysis 
 
 

 
Fig. 4: Graph of Infected against time  
 

 
Fig. 5: Graph of Quarantined against time 
 
The populations of infectious and quarantined individuals over a period of time are shown in figures 4 and 5 here, the two  
populations have below 50 individuals for a long period of time, but after 40 years. The result seem a contrast to what is 
obtainable in the deterministic model when the infected and quarantined populations increase rapidly at the onset of the 
disease. The deterministic gives a better description of the model. It considered environmental fluctuations which were not 
captured by the deterministic model.      
 
2. Results And Conclusion 
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In this work, Chowell et. al (2015) work on modeling the case of early detection of Ebola virus is reviewed and extended 

to Stochastic model. A deterministic and Stochastic differential equation model is developed and investigated for the 

transmission dynamics of Ebola virus. The model, which is a multidimensional diffusion process, includes susceptible, exposed, 

infected and quarantined classes. This model is developed with an assumption that there can be a recovery for the infected 

population and after recovery the recovered individual do not stood the chance of been re-infected. We were able to see that the 

disease free steady state of our model is globally asymptotically stable. We also observed that there should be a bound at which 

Susceptible become infected. The endemic steady state showed that the disease will persist in the population if there is no bound 

on the interactions between the susceptible and infected population. It is also important to place the infected population in a 

quarantine, since removing the infected population will stop the susceptible from been infected. 

Not only should mass vaccination exercise be encouraged to cover the majority of the population whenever there is an 

outbreak of the disease but also, measles prevention must be a public health priority. As a mathematical epidemiologist, I can 

tell you there is some good news in the Ebola epidemic ravaging West Africa. This Ebola is not spreading nearly as fast as some 

scourges of the past. Ebola was an interesting case study for our mathematical modeling of the spread of disease, as there were 

two relatively large and well-documented outbreaks in which the impact of efforts to control the virus was evident (the 1995 

outbreak in Congo — formerly known as Zaire — and the 2000 outbreak in Uganda). It was intriguing — not to mention scary 

— to work on a disease that produced such horrific symptoms with a fatality rate above 50 percent. But I learned then that Ebola 

isn’t the fastest-spreading disease in human history. The good news is that Ebola has a lower reproductive rate than measles in 

the pre-vaccination days or the Spanish flu. Our 2004 work, which produced the first estimates for Ebola’s reproductive rate by 

using mathematical modeling and epidemiological data from the Central African outbreaks, found that each case of Ebola 

produced 1.3 to 1.8 secondary cases on average. This ongoing outbreak, a colleague and I recently found, has a reproductive rate 

that is about the same as the last one. It hasn’t become more transmissible in the more than 10 years it was lying low — and 

humankind has experience in dealing with it. And the time that elapses between the first Ebola case and the generation of 

secondary cases is about two weeks. This should allow plenty of time to identify those who are sick and protect people who 

might come in contact with them. People with Ebola are contagious and able to transmit the virus only when they are showing 

symptoms, which occurs about a week after they are exposed to the virus. To break the chain of the current Ebola epidemic, our 

numbers show that health-care workers need to stop about 50 percent of infectious contacts by effectively isolating people who 

are infectious. (Vaccinating at least some of the population would be another option, but no licensed vaccine is available.) The 

trouble is that the countries suffering from outbreaks have weak health-care systems – perhaps too weak to halve the number of 

infectious contacts. These countries lack gloves, gowns, face masks and other essential supplies to protect nurses and doctors 

from infection, and they don’t have an adequate surveillance system to catch and identify Ebola cases in a timely way. The 

number of doctors and health centers is small as well. 
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Appendix 
Deterministic Code: 
clearall 
global alpha Lambda beta k gamma_1 gamma_2 delta q_1 q_2 mu 
alpha=0.2;  
Lambda=40;  
beta=0.91;  
k=0.2;  
%gamma_1=0.17;  
gamma_2=0.2;  
delta=0.6;  
q_1=0.7;  
q_2=0.63;  
mu=0.0000498; 
for gamma_1=0.1:0.1:0.9; 
tspan =[0,50]; 
yzero = [50;40;10;75;20]; 
 [t,y]=ode45(@ebolatk,tspan,yzero); 
plot(t,y(:,3),'r') 
xlabel('time(years)'),ylabel('I') 
holdon 
end 
 
 
Stochastic Code: 
% A program for Ebola Model  
% The Euler-Maruyama method is used for solving the SDEs 
% y1 y2 y3 y4 and y5 are the different populations 
% y10 y20 y30 y40 and y50 are the initial populations 
% Problem-dependent statements are marked with a %***  
% icase=1 corresponds to the deterministic problem  
% nt is the number of steps 
% h is the step size 
% Accuracy generally increases as h decreases 
clf 
clear 
foricase=2 
cleartt 
clearyp1 
clearyp2 
clearyp3 
clearyp4 
clearyp5 
nsamp=100; %*** 
tmax=50; %*** 
nt=500; %*** 
y10=20; %*** 
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y20=25; %*** 
y30=15; %*** 
y40=25; %*** 
y50=15; %*** 
if(icase==1) nsamp=1; end 
h=tmax/nt; 
hs=sqrt(h); 
randn('state',20); %initiates the random number generator 
te1=zeros(nsamp,1); 
te2=zeros(nsamp,1); 
te3=zeros(nsamp,1); 
te4=zeros(nsamp,1); 
te5=zeros(nsamp,1); 
te6=zeros(nsamp,1); 
jj1=0; 
jj2=0; 
jj3=0; 
jj4=0; 
jj5=0; 
jj6=0; 
forjj=1:nsamp 
y1=y10; 
y2=y20; 
y3=y30; 
y4=y40; 
y5=y50; 
yp1(1)=y1; 
yp2(1)=y2; 
yp3(1)=y3; 
yp4(1)=y4; 
yp5(1)=y5; 
r=randn(nt+1,14); 
nchk1=0; 
nchk2=0; 
nchk3=0; 
nchk4=0; 
nchk5=0; 
n=0; 
t=0; 
chk=0; 
tt(1)=0; 
while (chk==0) 
n=n+1; 
t=t+h; 
if(jj==nsamp) tt(n+1)=t; end 
Lambda=0.070; 
mu=0.0048; 
alpha=0.03; 
beta=0.01; 
delta=0.2; 
q_1=0.7; 
q_2=0.63; 
gamma_1=0.17; 
gamma_2=0.2; 
lambda_1=0.71; 
lambda_2=0.82; 
k=0.5; 
f1=Lambda-beta*y3*y1-mu*y1; 
f2=beta*y3*y1-(k+mu)*y2; 
f3=(1-delta)*k*y2-(alpha+gamma_1+mu)*y3; 
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f4=delta*k*y2+alpha*y3-(gamma_2+mu)*y4; 
f5=(1-q_1)*gamma_1*y3+(1-q_2)*gamma_2*y4-mu*y5; 
g1=sqrt(delta)*r(n,1)-sqrt(mu*y1)*r(n,2)-sqrt(beta*y1*y3)*r(n,1); 
g2=sqrt(beta*y1*y3)*r(n,4)-sqrt(mu*y2)*r(n,5)-sqrt((1-delta)*k)*r(n,6)-
sqrt(delta*k)*r(n,7); 
g3=sqrt((1-delta)*k)*r(n,5)-sqrt(mu*y3)*r(n,7)-sqrt(alpha*y3)*r(n,8)-sqrt((1-
q_1)*gamma_1)*r(n,9); 
g4=sqrt(delta*k)*r(n,6)+sqrt(alpha*y3)*r(n,8)-sqrt(mu*y4)*r(n,11)-sqrt((1-
q_2)*lambda_2)*r(n,12)-sqrt(q_2*gamma_2)*r(n,13); 
g5=sqrt((1-q_1)*gamma_1)*r(n,9)+sqrt(2-q_2*gamma_2)*r(n,13)-sqrt(mu*y5)*r(n,14); 
if(icase==1) g1=0; end 
if(icase==1) g2=0; end 
if(icase==1) g3=0; end 
if(icase==1) g4=0; end 
if(icase==1) g5=0; end 
y1=y1+h*f1+hs*g1; 
y2=y2+h*f2+hs*g2; 
y3=y3+h*f3+hs*g3; 
y4=y4+h*f4+hs*g4; 
y5=y5+h*f5+hs*g5; 
if(jj==nsamp) yp1(n+1)=y1; end 
if(jj==nsamp) yp2(n+1)=y2; end 
if(jj==nsamp) yp3(n+1)=y3; end 
if(jj==nsamp) yp4(n+1)=y4; end 
if(jj==nsamp) yp5(n+1)=y5; end 
% This is Euler's approximation to the SDE 
if (y1 < 1) 
chk=1; 
jj1=jj1+1; 
te1(jj1)=t; 
end 
if (y2 < 1) 
chk=1; 
jj2=jj2+1; 
te2(jj2)=t; 
end 
if (y3 < 1) 
chk=1; 
jj3=jj3+1; 
te3(jj3)=t; 
end 
if (y4 < 1) 
chk=1; 
jj4=jj4+1; 
te4(jj4)=t; 
end 
if (y5 < 1) 
chk=1; 
jj5=jj5+1; 
te5(jj5)=t; 
end 
if (t >tmax) 
chk=1; 
jj6=jj6+1; 
te6(jj6)=t; 
chk=1; 
end 
end% end of while (chk==0) loop 
end% end of for jj=1:nsamp loop 
tp=0; tp1=0; tp2=0; tp3=0; tp4=0; tp5=0; tp6=0; 
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if(jj1 ~= 0) tp1=sum(te1)/jj1; end 
if(jj2 ~= 0) tp2=sum(te2)/jj2; end 
if(jj3 ~=0)  tp3=sum(te3)/jj3;end 
if(jj4 ~= 0) tp4=sum(te4)/jj4; end 
if(jj5 ~= 0) tp5=sum(te5)/jj5; end 
if(jj6 ~= 0) tp6=sum(te6)/jj6; end 
if(jj1+jj2+jj3+jj4+jj5~=0)tp=(sum(te1)+sum(te2)+sum(te3)+sum(te4)+sum(te4))/(jj1+jj2+jj3+
jj4+jj5); end 
p1=jj1/nsamp; 
p2=jj2/nsamp; 
p3=jj3/nsamp; 
p4=jj4/nsamp; 
p5=jj5/nsamp; 
p6=jj6/nsamp; 
disp(' ') 
if(icase==1) disp(' Deterministic Calculational Results'); end 
if(icase==2) disp(' Stochastic Calculation Results'); end 
disp(' icasensamp h tmax') 
disp((sprintf(' %12.0f %12.0f %12.5f %12.2f',icase,nsamp,h,tmax))); 
disp(' tp1 p1') 
disp((sprintf(' %12.6f %12.6f', tp1, p1))); 
disp(' tp2 p2') 
disp((sprintf(' %12.6f %12.6f', tp2, p2))); 
disp(' tp3 p3') 
disp((sprintf(' %12.6f %12.6f', tp3, p3))); 
disp(' tp4 p4') 
disp((sprintf(' %12.6f %12.6f', tp4, p4))); 
disp(' tp5 p5') 
disp((sprintf(' %12.6f %12.6f', tp5, p5))); 
disp(' tp6 p6') 
disp((sprintf(' %12.6f %12.6f', tp6, p6))); 
disp(' tp p1+p2+p3+p4+p5') 
disp((sprintf(' %12.6f %12.6f', tp, p1+p2+p3+p4+p5))); 
if(icase==1) title('Deterministic'); end 
if(icase==2) title('Stochastic'); end 
set(gca,'fontsize',18,'linewidth',1.5); 
plot(tt,yp1,'r-')%,tt,yp2,'k-', tt,yp4,'r-',tt,yp3,'y-',tt,yp5,'g-') 
xlabel('Time t') 
ylabel(' POPULATIONS') 
legend('Infected'),% 'Exposed','Infected','Quarantined','Recovered') 
if(icase==2) title('Stochastic'); end 
holdon 
end% end of for icase=1:2 loop 
holdoff 
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